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Introduction

We are interested on generating new data after observing a given dataset.

Deep learning based generative models have gained more and more interest for
this task.

Today we are going to focus on generating new data through Variational
Autoencoders (VAEs).
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What is a VAE?

What is Dimensionality Reduction?

What is an Autoencoder?

What is the latent space and why regularising it?

What is the link between VAEs and variational inference?

How to generate new data from VAEs?

Where can I use VAEs?
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Dimensionality Reduction

In machine learning, dimensionality reduction is the process of reducing the
number of features that describe some data.

Dimensionality reduction can then be interpreted as data compression where
the encoder compress the data (from the initial space to the encoded space, also
called latent space) whereas the decoder decompress them.

Of course, depending on the initial data distribution, the latent space dimension
and the encoder definition, this compression can be lossy, meaning that a part
of the information is lost during the encoding process and cannot be recovered
when decoding.
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Dimensionality Reduction

The main purpose of a dimensionality reduction method is to find the best
encoder/decoder pair among a given family.

In other words, for a given set of possible encoders and decoders, we are
looking for the pair that keeps the maximum of information when encoding and,
so, has the minimum of reconstruction error when decoding.

Dimensionality Reduction Problem

If we denote respectively E and D the families of encoders and decoders we are
considering, then the dimensionality reduction problem can be written:

(e∗, d∗) = argmin
(e,d)∈ExD

ε(x , d(e(x)))

where ε(x , d(e(x))) defines the reconstruction error measure between the input
data x and the encoded-decoded data d(e(x))
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Dimensionality Reduction

Figure: Illustration of the dimensionality reduction principle with encoder and decoder.
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Autoencoders (AE)

The general idea of autoencoders is pretty simple and consists on estimating the
encoder function e(x) and decoder function d(x) through neural networks.

Neural networks will, in theory, learn the best encoding-decoding scheme using
an iterative optimisation process.

The problem we are aiming to minimize is:

(θ∗e , θ
∗
d ) = argmin

θeθd

ε(x , d(e(x)))
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Autoencoders (AE)

Figure: Illustration of an autoencoder with its loss function.
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Autoencoders (AE)

The more complex the architecture is, the more the autoencoder can proceed to
a high dimensionality reduction while keeping reconstruction loss low.

If our encoder and our decoder have enough degrees of freedom, we can reduce
any initial dimensionality to 1, with no loss during the process.

However, an important dimensionality reduction with no reconstruction loss often
comes with a price:

Lack of interpretable and exploitable structures in the latent space (lack of
regularity)
Loss of the major part of the data structure information in the reduced
representations.

.

For these two reasons, the dimension of the latent space and the depth of
autoencoders have to be controlled and adjusted depending on the final purpose
of the dimensionality reduction.
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Autoencoders (AE)

Figure: When reducing dimensionality, we want to keep the main structure there
exists among the data.
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Limitations of autoencoders for content generation

Once the autoencoder has been trained, we have both the encoder and a
decoder functions. From there our focus will be on the latent space.

The idea is to take points from the latent space and decode them to get new
contents. Ideally, closer points on this space will be closer semantically.

However, there is no way to ensure that the encoder will organize the latent
space in a smart way compatible with the generative process we just described.

The regularity of the latent space for autoencoders is a difficult point that
depends on the distribution of the data in the initial space, the dimension of the
latent space and the architecture of the encoder.
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Limitations of autoencoders for content generation

Figure: We can generate new data by decoding points that are randomly sampled
from the latent space. The quality and relevance of generated data depend on the
regularity of the latent space.
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Variational Autoencoder (VAE)

A VAE is an autoencoder whose encodings distribution is regularised during the
training in order to ensure that its latent space has good properties allowing us to
generate new data.
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Probabilistic Framework

In order to introduce some regularisation of the latent space, we proceed to a
slight modification of the encoding-decoding process: instead of encoding an
input as a single point, we encode it as a distribution over the latent space.

Let’s define a graphical probabilistic model to describe our data. We denote by x
the variable that represents our data and assume that x is generated from a
latent variable z (the encoded representation) that is not directly observed.

Thus, for each data point, we are assuming they were generated through:
1 A latent variable z sampled from the prior distribution p(z).
2 The data x is sampled from p(x |z).

Figure: Graphical model of the data generation process..
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Probabilistic Framework

With this approach we can note that we are introducing a ”probabilistic decoder”
defined by p(x |z).
We can then build our distributions for p(x |z) and p(z) in such a way they both
satisfy our regularisation requirements.

Following the ”probabilistic decoder” idea, we can define the ”probabilistic
encoder” as p(z|x).
Bayes theorem makes the link between the prior p(z), the likelihood p(x |z), and
the posterior p(z|x) so we can calculate the ”encoder”.

p(z|x) =
p(x |z)p(z)

p(x)
=

p(x |z)p(z)∫
p(x |u)p(u)du

The problem now is how to deal with the denominator...
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Probabilistic Framework

Let’s define p(z) and p(x |z)

p(z) ≡ N (0, I)

p(x |z) ≡ N (f (z), cI)f ∈ Fc > 0

Let’s consider, for now, that f is well defined and fixed. In theory, as we know
p(z) and p(x |z), we can use the Bayes theorem to compute p(z|x).
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Variational Inference Formulation

In statistics, variational inference (VI) is a technique to approximate complex
distributions.

We want to estimate the Posterior Distribution (p(z|x)) given our likelihood
(p(x |z)) and prior (p(z)). [Inference]

We want to optimize over a parametrized family of functions in order to look for
the best approximation of our target distribution. [Variational Calculus]

The best element in the family is one that minimise a given approximation error
measurement, in this case Kullback-Leibler divergence.

KL(p, q) = Ez∼p[log p(z)]− Ez∼p[log q(z)]
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Variational Inference Formulation

Here we are going to approximate p(z|x) by a Gaussian distribution qx (z) whose
mean and covariance are defined by two functions, g and h, of the parameter x .

qx (z) ≡ N (g(x), h(x))g ∈ Gh ∈ H

So, we have defined this way a family of candidates for variational inference and
need now to find the best approximation among this family by optimising the
functions g and h (in fact, their parameters) to minimise the Kullback-Leibler
divergence between the approximation and the target p(z|x).
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Variational Inference Formulation

In other words, we are looking for the optimal g* and h* such that

(g∗, h∗) = argmin
(g,h)∈GxH

KL(qx (z), p(z|x))

= argmin
(g,h)∈GxH

(Ez∼qx (log qx (z))− Ez∼qx (log
p(x |z)p(z)

p(x)
)

= argmin
(g,h)∈GxH

(
Ez∼qx (log qx (z))− Ez∼qx (log p(z))− Ez∼qx (log p(x |z))

− Ez∼qx (log p(x))
)

= argmax
(g,h)∈GxH

(Ez∼qx (log p(x |z))− KL(qx (z), p(z)))
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Variational Inference Formulation

The last equation is super important. It is called Evidence Lower Bound (ELBO)
and it reflects a tradeoff of two quatities:

1 Maximising the likelihood of the “observations”. Can be seen as
reconstruction quality over x .

2 Staying close to the prior distribution. Can be seen as the degree of
compact representation on the latent space.

We have assumed that p(x |z) is defined through the function f which we
assume is known and fixed and we have showed that, under such assumptions,
we can approximate the posterior p(z|x) using variational inference technique.
However, in practice this function f , that defines the decoder, is not known and
also need to be chosen.
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Variational Inference Formulation

We want to choose the function f that maximises the expected log-likelihood of x
given z when z is sampled from q∗x (z).

In other words, for a given input x, we want to maximise the probability to have
x̂ = x when we sample z from the distribution q∗x (z) and then sample x̂ from the
distribution p(x |z).
Thus, we are looking for the optimal f∗ such that:

f∗ = argmax
f∈F

Ez∼q∗
x
(log p(x |z))

= argmax
f∈F

Ez∼q∗
x

(
−
||x − f (z)||2

2c

)
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Variational Inference Formulation

Gathering all the pieces together, we are looking for optimal f∗, g∗, h∗ such that

(f∗, g∗, h∗) = argmax
(f ,g,h)∈FxGxH

(
Ez∼qx

(
−
||x − f (z)||2

2c

)
− KL(qx (z), p(z))

)
(1)

We can identify in this objective function: the reconstruction error between x and
f (z) and the regularisation term given by the KL divergence between qx (z) and
p(z) (which is a standard Gaussian).

We can also notice the constant c that rules the balance between the two
previous terms. The higher c is the more we assume a high variance around
f (z) for the probabilistic decoder in our model and, so, the more we favour the
regularisation term over the reconstruction term.
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Bringing Neural Networks into the model (Encoder)

In practice, g and h are not defined by two completely independent networks but
share a part of their architecture and their weights so that we have:

g(x) = g2(g1(x))

h(x) = h2(h1(x))

g1(x) = h1(x)
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Bringing Neural Networks into the model (Encoder)

Figure: Encoder part of the VAE.
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Bringing Neural Networks into the model (Decoder)

Contrarily to the encoder part that models p(z|x) and for which we considered a
Gaussian with both mean and covariance that are functions of x (g and h), our
model assumes for p(x |z) a Gaussian with fixed covariance. The function f of
the variable z defining the mean of that Gaussian is modelled by a neural
network and can be represented as follows:

Figure: Decoder part of the VAE.
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Bringing Neural Networks into the model

The overall architecture is then obtained by concatenating the encoder and the
decoder parts.

The sampling process has to be expressed in a way that allows the error to
be backpropagated through the network. We use a reparametrisation trick, to
make the gradient descent possible despite the random sampling.

We want z to be described with determistic parameters to backpropagate the
gradients, so we will describe it through a third variable ζ which will introduce the
undeterministic sampling process, then z can be expressed as:

z = h(x)ζ + g(x), ζ ∼ N (0, I)
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Bringing Neural Networks into the model

Figure: Illustration of the reparametrisation trick.
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Bringing it all together

Figure: Variational Autoencoders representation.
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VAE Applications (MusicVAE)
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VAE Applications (MusicVAE)

Previous work attempted to capture the temporal dependencie on data through
the use of RNN (Recurrent VAEs).

This approach had two major drawbacks:
1 RNNs were powerful enough to encode all the data, leading to a disregard

of the latent code [Posterior Collapse]. This could be interpreted in the
ELBO as a maximization only on the reconstruction quality term while
setting the regularization term to zero.

L = E[logpθ (x |z)− KL(qλ(z|x)||p(z))]

2 The model must compress the entire sequence to a single latent vector.
This approach can work for short sequences, but it begins to fail as the
sequence length increases.

This paper presents a hierarchical RNN for the decoder, which limits the scope of
the decoder to force it to use the latent code to model long-term structure.
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VAE Applications (MusicVAE)

Figure: Schematic of the hierarchical recurrent Variational Autoencoder model,
MusicVAE.
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VAE Applications (Music InpaintNet)
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VAE Applications (Music InpaintNet)

Figure: MeasureVAE schematic. Individual components of the encoder and decoder
are shown below the main blocks (dotted arrows indicate data flow within the individ-
ual components). z denotes the latent vector and ˆx denotes the reconstructed
measure.
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VAE Applications (Music InpaintNet)

Figure: LatentRNN schematic. The Past-Context and Future-Context-RNNs encode
Zp and Zf , respectively. The Generation-RNN initialized using a concatenation of
context-RNNs embeddings is unrolled ni times to get Zi .
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VAE Applications (Music SketchNet)
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VAE Applications (Music SketchNet)

Figure: SketchVAE structure: pitch encoder, rhythm encoder and hierarchical
decoder. Rhythm tokens: the upper dashes denote the onsets of note, and the bottom
dashes denote the hold/duration state. Pitch symbols represent the tokens numbers for
better illustration.
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VAE Applications (PianoTree VAE)
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VAE Applications (PianoTree VAE)

Figure: Illustration of the proposed polyphonic syntax.
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VAE Applications (PianoTree VAE)

Figure: An illustration of PianoTree data structure to encode the music example
above.
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VAE Applications (PianoTree VAE)

Figure: An overview of the model architecture. The recurrent layers are represented
by rectangles and the fully-connected (FC) layers are represented by trapezoids. The
note, simu note and score events are represented by circles.
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