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Background

Word Embeddings

e Word embeddings are models that encode the meaning of words in dense vectors,
based on the distributional hypothesis [5].

e They are some of the most used models in the Natural Language processing field to
represent the human vocabulary.
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Figure: Example of vectors

. o (3/15)



Background

Bias in Word Embeddings

e It has been found that some word embedding models learn relationships such as
“man” is to “computer programmer” as “woman” is to “homemaker” [3], resulting in
unfair representations of the language.

e To address the bias issue several bias mitigation algorithms have been proposed
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Figure: The vector for “doctor” is closer to masculine words and “nurse” to feminine words.
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Background

Bias in Word Embeddings models

e To address the bias issue:

> Different metrics have been proposed aiming to quantify the bias in word embedding
models.
» Algorithms that aim to mitigate the bias in word embedding models have been proposed.

e WEFE [2] encapsulates bias measurement metrics and bias mitigation algorithms.
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Problem to Address

e There is a lack of systematic comparison of the bias mitigation algorithms

e Comparing them is not a trivial task
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Figure: Comparison of the algorithms
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Problem

Problem to Address

e This makes it unclear which algorithms reduces bias the most.

e Makes it difficult to improve the bias mitigation effect.
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Objectives

This research

For this work we address two research lines:
1. Create a standardize methodology to compare bias mitigation algorithms

2. Combine the algorithms to improve their performance.

» Using the idea of ensemble methods from classical machine learning
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Methodology I

Comparing algorithms

e The algorithms differ in:

> Word sets they use
» Pre-operations they perform

e To fairly compare the methods we will eliminate these by standardizing all variables
that can affect the bias.
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Methodology IT

Ensemble methods

Ensembles consists of sets of implemented instances of machine learning algorithms that
work together to improve the performance of the overall system [1].
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Figure: Types of ensembles [4]
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Methodology IT

Adapting ensembles

e Instead of sampling training data, sampling words used to perform the debias.

s Murse [ 2 1 5 |
Doctor 2 1 5
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Figure: Apply the debias to some words
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Methodology IT

Adapting ensembles

e Instead of sampling training data, sampling dimension of the vectors used to perform
the debias.

A
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Programmer 3 4 5
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Figure: Apply the debias to some of the dimensions of the vectors
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Methodology IT

Adapting ensembles

e Combining the debiased word vectors of different debias algorithms giving more
importance to those that perform better, according to the bias measurement metrics.

e Applying one algorithm after another.
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Figure: Combination of bias mitigation algorithms
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Expected Results

Contributions

As a result of this research, we expect to contribute by improving bias mitigation methods
that have already been proposed by proposing ensemble methods for bias mitigation
algorithms.
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