
18 N. Brandstetter et al.

A Re�exion

A.1 Architecture Description using FALAA

The following sections present the information retrieval and prompt creation fragments of the Planner and
Reflector components of the Reflexion agent in Figures 10 and 11, respectively.

Fig. 10: UML sequence diagram of the information retrieval process for Planner to generate a prompt. In
this �ow, Planner uses internal actions of type retrieval, represented by the get methods of the episodic,
procedural, and semantic memories, from which examples are obtained along with the allowed actions and
instructions. These are condensed into the PlannerPrompt object, aiming to guide the behavior of the Planner
LLM to generate actions.



FALAA: Framework for the abstraction of language agents architectures 19

Fig. 11: UML sequence diagram of the information retrieval process for Reflector to generate a prompt. In this
�ow, Reflector uses internal actions of type retrieval, represented by the get methods of the episodic and
procedural memories, from which examples for the LLM and the allowed actions along with the instructions
to guide the LLM behavior are obtained. These, together with the task and current trajectory retrieved from
the short-term memory, are used to generate the prompt.



20 N. Brandstetter et al.

B Retroformer

B.1 Pseudo Code

Figure 12 shows the training process based on RLHF, which was ultimately used as a guide to decide whether
Retroformer would be trained for one or multiple environments.

Fig. 12: Diagram outlining the RLHF-based training process, consisting of three steps: Obtaining training data;
Training a reward model with Supervised Learning; and �ne-tuning the retrospective model through response
ranking using PPO [extracted from [13]].



FALAA: Framework for the abstraction of language agents architectures 21

B.2 Architecture Description using FALAA

Fig. 13: UML class diagram of a Retroformer agent.

(1) Conceptual Description Level Components Description. Retroformer [13] originally proposes three
fundamental components: an Actor, a Retrospective model and a memory module (short-term and long-term
memory, as well as a replay bu�er). Along with this components, a reward model is trained and used. Figure 13
shows the UML diagram exemplifying how these components are integrated under the standard structure
proposed by FALAA. Each component is presented below, providing the original de�nition and its respective
standardized adaptation:

1. Actor

� Original De�nition: The Actor is described, like in Reflexion, as the component responsible for solving
the assigned task, using an LLM to generate and execute actions in an environment.

� Adaptation in FALAA :
• Under the standardized structure, it is de�ned as an additional component, consisting of two main
subcomponents: the Planner, which is responsible for planning actions, and the Executor, which
executes them.

• The original concept of �solving the task� is maintained, but adapted to �t within the FALAA structure
for better integration and compatibility with other agents.

2. Retrospective model

� Original De�nition: It consists of a smaller LLM compared to the Actor and is responsible for producing
re�ections (feedback) when the Actor fails in the task.

� Adaptation in FALAA :
• It is associated with the Reflector component, whose function is to generate re�ections and insights
on failures or possible improvements in the Actor's strategy.

3. Reward Model

� Original De�nition: Speci�cally trained by Retroformer to evaluate the quality of re�ections generated
by the Retrospective model.

� Adaptation in FALAA :
• It is designated as an independent object within the architecture, similar to LLMs, dedicated to
evaluation and reward assignment.



22 N. Brandstetter et al.

4. Memory Module

� Original De�nition:

• Short-term memory : Stores the trajectory (actions, observations, rewards) generated by the Actor.
• Long-term memory : Saves re�ections produced by the Retrospective model.
• Replay bu�er : Specialized memory for storing triplets of prompts, re�ections, and the accumulated
reward of the episode.

� Adaptation in FALAA :

• Short-term memory: Under the standard structure, it stores a series of attributes, including the tra-
jectory generated by the Actor and the accumulated rewards of that trajectory, as well as attributes
aimed at the training process of Retroformer.

• Long-term memory for reflections: Re�ections are stored in the semantic memory due to its
nature of storing knowledge.

• Replay buffer: This particular memory is established as a dictionary that stores a triplet of
prompts, re�ections, and their classi�cation as correct or incorrect for various environments. It
is stored in the episodic memory due to its nature of storing past experiences.

Retroformer utilizes all structures proposed by FALAA, with the procedural memory playing a key role due
to the architecture's training processes. This memory in the Retroformer architecture it can execute learning
actions through methods that implicitly update stored information, modifying the LLM and neural network-
based reward model policies.

The training process also in�uences the short-term memory, which stores various information such as
train_data. The trajectory stored in the short-term memory also undergoes modi�cations, adopting a sequence
that now includes the elements Action, Observation, and Reward, re�ecting the new architectural needs for a
more structured and e�cient process.

We de�ne several Objects representing prompts and examples used in the creation of actions and re�ections
by Planner and Reflector respectively. This is to make their composition explicit, as in implementations they
are often text strings or token lists.

The Evaluator component plays a crucial role within the architecture. Since it is responsible for generating
evaluations and thus rewards, it integrates the reward model dedicated to evaluating the quality of re�ections.
Evaluator o�ers various functional methods, including the evaluation of an action-observation pair through a
reward function, calculating the sum of rewards in a given trajectory, determining whether an action corresponds
to a �nal response, and assessing the quality of a re�ection.

Fig. 14: UML main sequence diagram of the Retro-
former LLM-based agent.

In general, the architecture of Retroformer partially
retains the structure of Reflexion, but introduces mod-
i�cations and new functionalities, such as the use of
rewards for each step of the trajectory or new at-
tributes in the short-term memory used in the train-
ing processes of the reward model and retrospective
model.

Behavior Description. Figure 14 shows the main
UML sequence diagram of a Retroformer agent. Before
interacting with the user, Retroformer exists in a cer-
tain environment, so its memories must be initialized (this
fragment is identical to Reflexion in Figure 4). Once ini-
tialized, an in�nite loop begins where the agent receives a
new task from the user, which is added to the short-term
memory before proceeding with the work cycle (condensed
under the ref fragment referencing Figure 15). After com-
pleting this process, the generated response is retrieved
from the short-term memory and returned to the user. Similar to Reflexion, it is not explicitly described
what should happen if the response is not found, so we assume that the agent does not perform any additional



FALAA: Framework for the abstraction of language agents architectures 23

actions. Finally, the short-term memory is cleared using its Reset() method, leaving the agent ready to receive
a new task.

Fig. 15: UML sequence diagram of the work cycle of a Retroformer agent.

Regarding the referenced work cycle (see Figure 15), it is observed that the Retroformer agent maintains a
work cycle similar to that of Reflexion, consisting of a loop running from 1 to the maximum value episode_limit,
which indicates the number of failed responses allowed before ending the cycle. The loop continues as long as
the response generated in the previous iteration is not correct. In each iteration, the Actor attempts to solve the
task (see Figure 16), returning the sum of the accumulated rewards in its trajectory along with an indication
of whether the task was successfully resolved. If the task is not successfully resolved, the process of generating
re�ections is executed, introducing a new �ow (see Figure 18). Finally, a new iteration begins.

The task resolution process of the Actor, as shown in Figure 16, remains as general as possible, since
Retroformer allows replacing the Actor with components from other agents. The task resolution �ow is based
on two parts.

The �rst part is a loop with a maximum of step_limit steps, where in each step, Planner is asked to generate
an action (the planning and corresponding information retrieval process for prompt creation is the same as in
Reflexion, see Figures 7 and 10, respectively). The generated action is then evaluated to determine if it is the
�nal response, which would end the loop. If not, Executor executes the action, receiving an observation that
is added to the trajectory in the short-term memory (the process is the same as in Reflexion, see Figure 8).
Then, the action-observation pair is evaluated using the reward function of Evaluator, returning a score for
this step, which is converted into a Reward object and added to the short-term memory.

The second part occurs when the loop ends, either by reaching the step limit or by �nding the correct
response. The current episode is then evaluated, where the accumulated rewards from the current trajectory
are obtained, and it is determined whether the response is correct or not, returning these two values.



24 N. Brandstetter et al.

Fig. 16: UML sequence diagram of the task resolution process by the Actor component of a Retroformer agent.

Fig. 17: UML sequence diagram of the re�ec-
tion process of the Reflector component of
a Retroformer agent.

Figure 18 shows the process of selecting the best re�ec-
tion from the Reflector component of a Retroformer agent,
which is the main innovation of this architecture. It illustrates
how Reflector generates re�ection_tries re�ections in a loop.
In each step of this loop, a re�ection is generated using the
re�ect() method (see Figure 17), where a prompt composed
of information from short-term and long-term memories (see
Figure 19) is used to generate a re�ection, which is then re-
turned.

Once the re�ection is generated, it is evaluated using the
Evaluator component, which acts as an intermediary. Using the
prompt and the generated re�ection, Evaluator applies its pre-
trained neural network model to assess the quality of the re�ec-
tion. If the re�ection is better than the best one stored so far,
it is saved as the best re�ection in the short-term memory. At
the end of the cycle, the best re�ection is stored in the semantic
memory, ensuring that the storage limit is not exceeded.



FALAA: Framework for the abstraction of language agents architectures 25

Fig. 18: UML sequence diagram of the best re�ection selection process for the Reflector component of a
Retroformer agent.



26 N. Brandstetter et al.

Fig. 19: UML sequence diagram of the information retrieval process for re�ection in the Retroformer agent.
In this �ow, Reflector uses internal retrieval actions, represented by the get methods of the episodic and
procedural memories, from which examples for the LLM and the allowed actions along with instructions to
guide the LLM's behavior are obtained. These, together with the current task and trajectory retrieved from
the short-term memory, are used to generate the prompt. This prompt, before being returned, is stored in the
short-term memory.

Fig. 20: Main UML sequence diagram of
the RLHF-based training process of a
Retroformer agent.

Training Process. Retroformer employs an RLHF-
based training method [5], where it trains a neural net-
work model using supervised learning to evaluate re�ec-
tions, along with the supervised learning-based training of
the LLM contained in Reflector. Figure 20 illustrates the
general training process of a Retroformer agent. This pro-
cess consists of the three RLHF steps, which are ab-
stracted into the methods collectSFTData(train_data)6, train-
RewardModel(), and trainRe�ectorModel() of the Retroformer

agent. The three sequences are referenced in the dia-
gram and correspond to Figures 21, 24, and 25, respec-
tively.

The �rst step of the RLHF-based training focuses on data col-
lection. Figure 21 shows how, after receiving a dictionary with
environments and their respective tasks, the Retroformer agent
iterates over each environment, updating the environment in-
stance stored in the Executor component. Then, memories are
initialized based on this new environment (the same process as in
Reflexion, see Figure 4). Each task associated with the environ-
ment is iterated a total of three times. For each task, the process
is quite similar to the work cycle of a Retroformer agent (see

6 The information contained in the task_data variable is based on a dictionary where the key represents various envi-
ronments, and the value associated with each key is a set of tasks. A detailed view of the types can be found in the
component description in the class diagram in Figure 13



FALAA: Framework for the abstraction of language agents architectures 27

Figure 15), where the task is solved, the response is evaluated, and the information is stored in the short-term
memory. The di�erence is that if the response is incorrect, a process is initiated to generate two re�ections (see
Figure 22), which are then evaluated by the Evaluator and stored in the replay bu�er (see Figure 23) of the
episodic memory. Finally, the short-term memory is reset, and the next task is processed.

Fig. 21: UML sequence diagram of Step 1: Data collection for a Retroformer agent.

The process depicted in Figure 22 is another proposal from [13]. To avoid human intervention in labeling
good and bad re�ections, the authors of Retroformer propose using the di�erence between the accumulated
rewards of two successive episodes as a signal to classify re�ections into good and bad categories.7

7 This is because the Planner LLM is considered a frozen parameter model with a low temperature. In this context,
temperature refers to the parameter that con�gures the randomness in the LLM's response generation, implying that
randomness injection is minimal. Therefore, changes in accumulated rewards are mainly attributed to the Reflector

LLM.



28 N. Brandstetter et al.

In this process, based on the same trajectory, two re�ections are generated. Then, each re�ection is iterated,
and the task is attempted again, obtaining accumulated rewards for each episode. Finally, for each of the two
re�ections, the prompt, re�ection, and new accumulated rewards are stored in the short-term memory for fur-
ther classi�cation.

The �nal part of Step 1: Data collection is illustrated in Figure 23, which shows how the generated re�ection
information is stored in the replay bu�er of the episodic memory. The addition of this data is based on the
di�erence in accumulated rewards between the two consecutive episodes obtained for each re�ection. Comparing
this score determines which re�ection is correct and which is incorrect. An unde�ned case by [13] is highlighted,
where both scores obtained for the re�ections are equal. In such a case, both re�ections are classi�ed as correct;
however, it is noted that this remains an open issue.

Fig. 22: UML sequence diagram of the �ow that creates training data based on two re�ections of a Retroformer
agent.



FALAA: Framework for the abstraction of language agents architectures 29

Fig. 23: UML sequence diagram showing the process of �lling the replay bu�er of the episodic memory in a
Retroformer agent.

Step 2 of the training process for a Retroformer agent, illustrated in Figure 24, focuses on training a
reward model using information from the replay bu�er of the episodic memory. In this process, Retroformer
utilizes the procedural memory (which implicitly stores the information contained in the parameters of both
the reward model and the LLMs) to update the reward model's policy. The reward model is trained using
supervised learning based on the data stored in the replay bu�er.



30 N. Brandstetter et al.

Fig. 24: UML sequence diagram of Step 2 in RLHF-based training of a neural network reward model for a
Retroformer agent.

Fig. 25: UML sequence diagram of Step 3 in RLHF-based training of a Retroformer agent, where the LLM of
the Reflector is trained using reinforcement learning.

Finally, Step 3 of the RLHF training process is depicted in Figure 25. In this step, the LLM of the Reflector
is trained using reinforcement learning, leveraging the reward model trained in the previous step. The process
iterates over each environment and its respective tasks stored in the replay bu�er of the episodic memory.



FALAA: Framework for the abstraction of language agents architectures 31

Similar to Step 1 of data collection, the environment is initialized, and the task is solved using the Actor. The
di�erence is that now, when a response fails, the process shown in Figure 26 is triggered, where a re�ection
is generated, evaluated, and the LLM of the Reflector is �ne-tuned based on this re�ection using the PPO
algorithm [6].

Fig. 26: UML sequence diagram where, given a re�ection, it is evaluated using the reward model of Evaluator,
and this score is then used to update the policy of the LLM in the Reflector component using the PPO
algorithm.

(2) Formal Speci�cation Level In the Retroformer architecture, we have identi�ed seven behaviors that,
to avoid ambiguities, need to be formally speci�ed. These behaviors are:

1. The Reset method of the short-term memory, which must clear its attributes in a speci�c format.

2. The isDone(Action) method of Evaluator, which must return true if the received action contains the string
�[answer]�.

3. The semantic memory can store at most 3 re�ections.

4. The respective precondition of the addRe�ection method in semantic memory, which allows adding a new
re�ection only if there are fewer than 3 re�ections stored.

5. The trajectory invariant of the short-term memory, which states that stored objects must be added in the
sequence Action-Observation-Reward.

6. The pre and postconditions that the addToTrajectory method of short-term memory must follow.

7. In the training process of Retroformer, 2 re�ections are used to generate training data. We decided to
explicitly de�ne this invariant, where the information temporarily stored in the train_data attribute of the
short-term memory consists of 2 re�ections, one correct and one incorrect.

The behaviors 1, 2, 3, and 4, speci�ed using OCL, are described similarly to their counterparts in Reflexion,
which are presented in equations 1, 2, 3, and 4, respectively.

The speci�cations of behaviors 5, 6, and 7 are presented below in equations 7, 8, and 9, respectively.



32 N. Brandstetter et al.

context ShortTermMemory inv :

self.trajectory → notEmpty()

or (7)

let size: Integer = self.trajectory → size() in

Sequence{1..size} → forAll(i :Integer |

if i.mod(3) = 1 then

self.trajectory → at(i).oclIsTypeOf(Action)

else if i.mod(3) = 2 then

self.trajectory → at(i).oclIsTypeOf(Observation)

else

self.trajectory → at(i).oclIsTypeOf(Reward)

endif

)

context ShortTermMemory :: addToTrajectory(newItem : TrajectoryItem): OclVoid

pre :

if self.trajectory → isEmpty() then

newItem.oclIsTypeOf(Action)

else let lastElement = self.trajectory → last() in

if lastElement.oclIsTypeOf(Action) then

newItem.oclIsTypeOf(Observation) (8)

else if lastElement.oclIsTypeOf(Observation) then

newItem.oclIsTypeOf(Reward)

else if lastElement.oclIsTypeOf(Reward) then

newItem.oclIsTypeOf(Action)

endif

post :

self.trajectory → size() = self.trajectory@pre → size()+ 1

post :

self.trajectory → last() = newItem



FALAA: Framework for the abstraction of language agents architectures 33

context ShortTermMemory::Reset(): OclVoid

post:

self.task = �� (9)

post:

self.answer = ��

post:

self.trajectory → isEmpty()

post:

self.accumulated_rewards = 0

post:

self.train_data → isEmpty()

post:

self.best_re�ect → isEmpty()

post:

self.last_re�ector_prompt → isEmpty()

context ShortTermMemory inv :

self.train_data → size() <= 2 (10)


