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A Reflexion

A.1 Architecture Description using FALAA

The following sections present the information retrieval and prompt creation fragments of the Planner and
Reflector components of the Reflexion agent in Figures 10 and 11, respectively.
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Fig.10: UML sequence diagram of the information retrieval process for Planner to generate a prompt. In
this flow, Planner uses internal actions of type retrieval, represented by the get methods of the episodic,
procedural, and semantic memories, from which examples are obtained along with the allowed actions and
instructions. These are condensed into the PlannerPrompt object, aiming to guide the behavior of the Planner
LLM to generate actions.
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Fig.11: UML sequence diagram of the information retrieval process for Reflector to generate a prompt. In this
flow, Reflector uses internal actions of type retrieval, represented by the get methods of the episodic and
procedural memories, from which examples for the LLM and the allowed actions along with the instructions
to guide the LLM behavior are obtained. These, together with the task and current trajectory retrieved from
the short-term memory, are used to generate the prompt.
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B Retroformer

B.1 Pseudo Code

Figure 12 shows the training process based on RLHF, which was ultimately used as a guide to decide whether
Retroformer would be trained for one or multiple environments.

Algorithm 1 Retroformer with Policy Gradient Optimization

1: Initialize TEXT-DAVINCI-003 as the Retrospective model with LONGCHAT-16K. Set the maxi-
mum trials for rollouts as N = 3. The temperature used for sampling ¢, = 0.9.
: Step 1: Offline Data Collection. Collect multiple rollouts for each environments &k (k =

=

1, -, K) for the tasks in the training sets and save as Dpgy..
s forepisodet=1,..., N do
4. for source domaink=1,...,Kdo
5: Receive trajectory [sg.i 7, G.i.r Tk.i.r| +—1 and episodic returns G, ; for task .
6: for unsuccessful tasks j do
7 Randomly sample a pair of reflection responses (y,(blj yfj) with Retrospective LM tem-
perature set to ¢4, with the same instruction prompt defined in Eq. (4).
8: Roll out the next episode with yy ;, and receive the episodic returns (Gil_gﬂ, GEEH).
0. Compute reflection response rating by 7(z.;, Yk.:) e Gh.i+1 — G in Eq. (5).

10: Label the response with higher ratings as the accepted response while the lower response
is labeled as the rejected response.

1 end for
122 end for
13: end for

14: Step 2. Reward Model Learning. Use the REWARDTRAINER in TRL to train a model for
classifying accepted and rejected responses given instructions.

1s: Step 3: Policy Gradient Finetuning. Plug-in the trained reward model and use the PPOTRAINER
in TRL to finetune the Retrospective model for generating reflection responses with higher ratings.

Fig. 12: Diagram outlining the RLHF-based training process, consisting of three steps: Obtaining training data;
Training a reward model with Supervised Learning; and fine-tuning the retrospective model through response
ranking using PPO [extracted from [13]].
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B.2 Architecture Description using FALAA
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Fig.13: UML class diagram of a Retroformer agent.

(1) Conceptual Description Level Components Description. Retroformer [13] originally proposes three
fundamental components: an Actor, a Retrospective model and a memory module (short-term and long-term
memory, as well as a replay buffer). Along with this components, a reward model is trained and used. Figure 13
shows the UML diagram exemplifying how these components are integrated under the standard structure
proposed by FALAA. Each component is presented below, providing the original definition and its respective
standardized adaptation:

1. Actor

— Original Definition: The Actor is described, like in Reflexion, as the component responsible for solving
the assigned task, using an LLM to generate and execute actions in an environment.
— Adaptation in FALAA:

e Under the standardized structure, it is defined as an additional component, consisting of two main
subcomponents: the Planner, which is responsible for planning actions, and the Executor, which
executes them.

e The original concept of “solving the task” is maintained, but adapted to fit within the FALAA structure
for better integration and compatibility with other agents.

2. Retrospective model
— Original Definition: It consists of a smaller LLM compared to the Actor and is responsible for producing
reflections (feedback) when the Actor fails in the task.
— Adaptation in FALAA:
o It is associated with the Reflector component, whose function is to generate reflections and insights
on failures or possible improvements in the Actor’s strategy.
3. Reward Model
— Original Definition: Specifically trained by Retroformer to evaluate the quality of reflections generated
by the Retrospective model.
— Adaptation in FALAA:

e It is designated as an independent object within the architecture, similar to LLMs, dedicated to
evaluation and reward assignment.



22 N. Brandstetter et al.

4. Memory Module

— Original Definition:

e Short-term memory: Stores the trajectory (actions, observations, rewards) generated by the Actor.

e Long-term memory: Saves reflections produced by the Retrospective model.

o Replay buffer: Specialized memory for storing triplets of prompts, reflections, and the accumulated
reward of the episode.

— Adaptation in FALAA:

e Short-term memory: Under the standard structure, it stores a series of attributes, including the tra-
jectory generated by the Actor and the accumulated rewards of that trajectory, as well as attributes
aimed at the training process of Retroformer.

e Long-term memory for reflections: Reflections are stored in the semantic memory due to its
nature of storing knowledge.

e Replay buffer: This particular memory is established as a dictionary that stores a triplet of
prompts, reflections, and their classification as correct or incorrect for various environments. It
is stored in the episodic memory due to its nature of storing past experiences.

Retroformer utilizes all structures proposed by FALAA, with the procedural memory playing a key role due
to the architecture’s training processes. This memory in the Retroformer architecture it can execute learning
actions through methods that implicitly update stored information, modifying the LLM and neural network-
based reward model policies.

The training process also influences the short-term memory, which stores various information such as
train_ data. The trajectory stored in the short-term memory also undergoes modifications, adopting a sequence
that now includes the elements Action, Observation, and Reward, reflecting the new architectural needs for a
more structured and efficient process.

We define several Objects representing prompts and examples used in the creation of actions and reflections
by Planner and Reflector respectively. This is to make their composition explicit, as in implementations they
are often text strings or token lists.

The Evaluator component plays a crucial role within the architecture. Since it is responsible for generating
evaluations and thus rewards, it integrates the reward model dedicated to evaluating the quality of reflections.
Evaluator offers various functional methods, including the evaluation of an action-observation pair through a
reward function, calculating the sum of rewards in a given trajectory, determining whether an action corresponds
to a final response, and assessing the quality of a reflection.

In general, the architecture of Retroformer partially

. . . sd Retroformer
retains the structure of Reflexion, but introduces mod- J i ‘ metotomer ‘ I —

ifications and new functionalities, such as the use of
rewards for each step of the trajectory or new at- User i
tributes in the short-term memory used in the train- Inicidlization
ing processes of the reward model and retrospective i :

loop *
model. _p) [ Receive(new_task)

updateTask(new_task)

Behavior Description. Figure 14 shows the main e
UML sequence diagram of a Retroformer agent. Before | WorkLoop
interacting with the user, Retroformer exists in a cer- : prs— :
tain environment, so its memories must be initialized (this T
fragment is identical to Reflexion in Figure 4). Once ini- TR S ;

e Reset()

tialized, an infinite loop begins where the agent receives a
new task from the user, which is added to the short-term
memory before proceeding with the work cycle (condensed
under the ref fragment referencing Figure 15). After com-
pleting this process, the generated response is retrieved
from the short-term memory and returned to the user. Similar to Reflexion, it is not explicitly described
what should happen if the response is not found, so we assume that the agent does not perform any additional

Fig. 14: UML main sequence diagram of the Retro-
former LLM-based agent.



FALAA: Framework for the abstraction of language agents architectures 23

actions. Finally, the short-term memory is cleared using its Reset() method, leaving the agent ready to receive
a new task.

sd workLoop
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: MultiReflect()
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Fig. 15: UML sequence diagram of the work cycle of a Retroformer agent.

Regarding the referenced work cycle (see Figure 15), it is observed that the Retroformer agent maintains a
work cycle similar to that of Reflexion, consisting of a loop running from 1 to the maximum value episode_ limit,
which indicates the number of failed responses allowed before ending the cycle. The loop continues as long as
the response generated in the previous iteration is not correct. In each iteration, the Actor attempts to solve the
task (see Figure 16), returning the sum of the accumulated rewards in its trajectory along with an indication
of whether the task was successfully resolved. If the task is not successfully resolved, the process of generating
reflections is executed, introducing a new flow (see Figure 18). Finally, a new iteration begins.

The task resolution process of the Actor, as shown in Figure 16, remains as general as possible, since
Retroformer allows replacing the Actor with components from other agents. The task resolution flow is based
on two parts.

The first part is a loop with a maximum of step limit steps, where in each step, Planner is asked to generate
an action (the planning and corresponding information retrieval process for prompt creation is the same as in
Reflexion, see Figures 7 and 10, respectively). The generated action is then evaluated to determine if it is the
final response, which would end the loop. If not, Executor executes the action, receiving an observation that
is added to the trajectory in the short-term memory (the process is the same as in Reflexion, see Figure 8).
Then, the action-observation pair is evaluated using the reward function of Evaluator, returning a score for
this step, which is converted into a Reward object and added to the short-term memory.

The second part occurs when the loop ends, either by reaching the step limit or by finding the correct
response. The current episode is then evaluated, where the accumulated rewards from the current trajectory
are obtained, and it is determined whether the response is correct or not, returning these two values.
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Fig. 16: UML sequence diagram of the task resolution process by the Actor component of a Retroformer agent.

Figure 18 shows the process of selecting the best reflec-
tion from the Reflector component of a Retroformer agent,
which is the main innovation of this architecture. It illustrates
how Reflector generates reflection_tries reflections in a loop.
In each step of this loop, a reflection is generated using the
reflect() method (see Figure 17), where a prompt composed
of information from short-term and long-term memories (see
Figure 19) is used to generate a reflection, which is then re-
turned.

Once the reflection is generated, it is evaluated using the
Evaluator component, which acts as an intermediary. Using the
prompt and the generated reflection, Evaluator applies its pre-
trained neural network model to assess the quality of the reflec-
tion. If the reflection is better than the best one stored so far,
it is saved as the best reflection in the short-term memory. At
the end of the cycle, the best reflection is stored in the semantic
memory, ensuring that the storage limit is not exceeded.

sd Reflection
reflector:Reflector reflectorLLM:LLM
Reflect() : :
getPrompt() :
ref
retrieval reflector :
info '
~ 7\ prompt E
generate(prompt) o :
reflection
reflection | [N "7 TTTTTTTTITTOS

Fig. 17: UML sequence diagram of the reflec-
tion process of the Reflector component of
a Retroformer agent.
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Fig.18: UML sequence diagram of the best reflection selection process for the Reflector component of a
Retroformer agent.
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Fig.19: UML sequence diagram of the information retrieval process for reflection in the Retroformer agent.
In this flow, Reflector uses internal retrieval actions, represented by the get methods of the episodic and
procedural memories, from which examples for the LLM and the allowed actions along with instructions to
guide the LLM’s behavior are obtained. These, together with the current task and trajectory retrieved from
the short-term memory, are used to generate the prompt. This prompt, before being returned, is stored in the
short-term memory.

Training Process. Retroformer employs an RLHF-

based training method [5], where it trains a neural net- |s¢ Re"°f°fmefRLHF”ai"]

work model using supervised learning to evaluate reflec- P

tions, along with the supervised learning-based training of i -

the LLM contained in Reflector. Figure 20 illustrates the Developer

general training process of a Retroformer agent. This pro- : ref |

cess consists of the three RLHF steps, which are ab- 5 colectSFTData(task_data) cdlect

stracted into the methods collectSFTData(train_ data)b, train- 0 i’ S-;gﬁ:vl:::

RewardModel(), and trainReflectorModel() of the Retroformer ;

agent. The three sequences are referenced in the dia- o

gram and correspond to Figures 21, 24, and 25, respec- ; . ;

tively. D trainRewardModel() » ST n?:;:?rd
The first step of the RLHF-based training focuses on data col- i

lection. Figure 21 shows how, after receiving a dictionary with Y

environments and their respective tasks, the Retroformer agent D rainReflectoriodel) - RL Reflector

iterates over each environment, updating the environment in- LLM

stance stored in the Executor component. Then, memories are : :

initialized based on this new environment (the same process as in
Reflexion, see Figure 4). Each task associated with the environ-
ment is iterated a total of three times. For each task, the process
is quite similar to the work cycle of a Retroformer agent (see

Fig.20: Main UML sequence diagram of
the RLHF-based training process of a
Retroformer agent.

® The information contained in the task_data variable is based on a dictionary where the key represents various envi-
ronments, and the value associated with each key is a set of tasks. A detailed view of the types can be found in the
component description in the class diagram in Figure 13



FALAA: Framework for the abstraction of language agents architectures 27

Figure 15), where the task is solved, the response is evaluated, and the information is stored in the short-term
memory. The difference is that if the response is incorrect, a process is initiated to generate two reflections (see
Figure 22), which are then evaluated by the Evaluator and stored in the replay buffer (see Figure 23) of the
episodic memory. Finally, the short-term memory is reset, and the next task is processed.
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loop env in task_data

updateEnvironment(env)
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Fig.21: UML sequence diagram of Step 1: Data collection for a Retroformer agent.

The process depicted in Figure 22 is another proposal from [13]. To avoid human intervention in labeling
good and bad reflections, the authors of Retroformer propose using the difference between the accumulated
rewards of two successive episodes as a signal to classify reflections into good and bad categories.”

7 This is because the Planner LLM is considered a frozen parameter model with a low temperature. In this context,
temperature refers to the parameter that configures the randomness in the LLM’s response generation, implying that
randomness injection is minimal. Therefore, changes in accumulated rewards are mainly attributed to the Reflector
LLM.
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In this process, based on the same trajectory, two reflections are generated. Then, each reflection is iterated,
and the task is attempted again, obtaining accumulated rewards for each episode. Finally, for each of the two
reflections, the prompt, reflection, and new accumulated rewards are stored in the short-term memory for fur-

ther classification.

The final part of Step 1: Data collection is illustrated in Figure 23, which shows how the generated reflection
information is stored in the replay buffer of the episodic memory. The addition of this data is based on the
difference in accumulated rewards between the two consecutive episodes obtained for each reflection. Comparing
this score determines which reflection is correct and which is incorrect. An undefined case by [13] is highlighted,
where both scores obtained for the reflections are equal. In such a case, both reflections are classified as correct;

however, it is noted that this remains an open issue.
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Fig. 22: UML sequence diagram of the flow that creates training data based on two reflections of a Retroformer

agent.




FALAA: Framework for the abstraction of language agents architectures 29
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Fig.23: UML sequence diagram showing the process of filling the replay buffer of the

Retroformer agent.

episodic memory in a

Step 2 of the training process for a Retroformer agent, illustrated in Figure 24, focuses on training a
reward model using information from the replay buffer of the episodic memory. In this process, Retroformer
utilizes the procedural memory (which implicitly stores the information contained in the parameters of both
the reward model and the LLMs) to update the reward model’s policy. The reward model is trained using
supervised learning based on the data stored in the replay buffer.
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sd ST Reward modeﬂ
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Fig.24: UML sequence diagram of Step 2 in RLHF-based training of a neural network reward model for a
Retroformer agent.
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Fig.25: UML sequence diagram of Step 3 in RLHF-based training of a Retroformer agent, where the LLM of
the Reflector is trained using reinforcement learning.

Finally, Step 3 of the RLHF training process is depicted in Figure 25. In this step, the LLM of the Reflector
is trained using reinforcement learning, leveraging the reward model trained in the previous step. The process
iterates over each environment and its respective tasks stored in the replay buffer of the episodic memory.
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Similar to Step 1 of data collection, the environment is initialized, and the task is solved using the Actor. The
difference is that now, when a response fails, the process shown in Figure 26 is triggered, where a reflection
is generated, evaluated, and the LLM of the Reflector is fine-tuned based on this reflection using the PPO
algorithm [6].

sd Train Reflector|

RewardModel: NNM

evaluator:Evaluator| | ShortTerm:ShortTermMemory, reflector:Reflector| | procedural:Prc o1y,

[one

reflectorLLM:LLM

i .
Reflect() i A

reflection Ré:ﬂechon

*1 _getLastReflectorPrompt()
—

reflector_prompt

....................... >|

Rale(prom;;!. reflection)

|jRa(e(promp(, reflection)
-——

PPO(reflector_prompt, reflection, score)

-.' updatePolicy(new_policy) I

Fig. 26: UML sequence diagram where, given a reflection, it is evaluated using the reward model of Evaluator,
and this score is then used to update the policy of the LLM in the Reflector component using the PPO
algorithm.

(2) Formal Specification Level In the Retroformer architecture, we have identified seven behaviors that,
to avoid ambiguities, need to be formally specified. These behaviors are:

[a—y

The Reset method of the short-term memory, which must clear its attributes in a specific format.

. The isDone(Action) method of Evaluator, which must return true if the received action contains the string

“lanswer]”.

. The semantic memory can store at most 3 reflections.

. The respective precondition of the addReflection method in semantic memory, which allows adding a new

reflection only if there are fewer than 3 reflections stored.

. The trajectory invariant of the short-term memory, which states that stored objects must be added in the

sequence Action-Observation-Reward.

. The pre and postconditions that the addToTrajectory method of short-term memory must follow.

. In the training process of Retroformer, 2 reflections are used to generate training data. We decided to

explicitly define this invariant, where the information temporarily stored in the train_ data attribute of the
short-term memory consists of 2 reflections, one correct and one incorrect.

The behaviors 1, 2, 3, and 4, specified using OCL, are described similarly to their counterparts in Reflexion,

which are presented in equations 1, 2, 3, and 4, respectively.

The specifications of behaviors 5, 6, and 7 are presented below in equations 7, 8, and 9, respectively.
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context ShortTermMemory inv :
self.trajectory — notEmpty/()
or (7)
let size: Integer = self.trajectory — size() in
Sequence{1..size} — forAll(i :Integer |
if imod(3) = 1 then
self.trajectory — at(i).oclIsTypeOf(Action)
else if imod(3) = 2 then
self.trajectory — at(i).ocllsTypeOf(Observation)
else
self.trajectory — at(i).oclIsTypeOf(Reward)
endif

context ShortTermMemory :: addToTrajectory(newltem : Trajectoryltem): OclVoid
pre :
if self.trajectory — isEmpty() then
newltem.oclIsTypeOf(Action)
else let lastElement — self.trajectory — last() in
if lastElement.oclIsTypeOf(Action) then
newltem.oclIsTypeOf(Observation) (8)
else if lastElement.oclIsTypeOf(Observation) then
newltem.oclIsTypeOf(Reward)
else if lastElement.ocllsTypeOf(Reward) then
newltem.ocllsTypeOf(Action)
endif
post :
self.trajectory — size() = self.trajectory@pre — size() + 1
post :

self.trajectory — last() = newltem
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context ShortTermMemory: :Reset(): OclVoid
post:
self.task =~
post:
self.answer =
post:
self.trajectory — isEmpty/()
post:
self.accumulated rewards = 0
post:
self.train _data — isEmpty/()
post:
self.best reflect — isEmpty()
post:
self.last_reflector prompt — isEmpty()

context ShortTermMemory inv :

self.train_ data — size() <=2
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